Penalized Normal Likelihood and Ridge Regularization of Correlation and Covariance Matrices

نویسنده

  • David I. WARTON
چکیده

High dimensionality causes problems in various areas of statistics. A particular situation that rarely has been considered is the testing of hypotheses about multivariate regression models in which the dimension of the multivariate response is large. In this article a ridge regularization approach is proposed in which either the covariance or the correlation matrix is regularized to ensure nonsingularity irrespective of the dimensionality of the data. It is shown that the proposed approach can be derived through a penalized likelihood approach, which suggests cross-validation of the likelihood function as a natural approach for estimation of the ridge parameter. Useful properties of this likelihood estimator are derived, discussed, and demonstrated by simulation. For a class of test statistics commonly used in multivariate analysis, the proposed regularization approach is compared with some obvious alternative regularization approaches using generalized inverse and data reduction through principal components analysis. Essentially, the approaches considered differ in how they shrink eigenvalues of sample covariance and correlation matrices. This leads to predictable differences in power properties when comparing the use of different regularization approaches, as demonstrated by simulation. The proposed ridge approach has relatively good power compared with the alternatives considered. In particular, a generalized inverse is shown to perform poorly and cannot be recommended in practice. Finally, the proposed approach is used in analysis of data on macroinvertebrate biomasses that have been classified to species.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

A path following algorithm for Sparse Pseudo-Likelihood Inverse Covariance Estimation (SPLICE)

Given n observations of a p-dimensional random vector, the covariance matrix and its inverse (precision matrix) are needed in a wide range of applications. Sample covariance (e.g. its eigenstructure) can misbehave when p is comparable to the sample size n. Regularization is often used to mitigate the problem. In this paper, we proposed an `1 penalized pseudo-likelihood estimate for the inverse ...

متن کامل

Penalized maximum likelihood estimates of genetic covariance matrices with shrinkage towards phenotypic dispersion

A simulation study examining the effects of ‘regularization’ on estimates of genetic covariance matrices for small samples is presented. This is achieved by penalizing the likelihood, and three types of penalties are examined. It is shown that regularized estimation can substantially enhance the accuracy of estimates of genetic parameters. Penalties shrinking estimates of genetic covariances or...

متن کامل

Penalized estimation of covariance matrices with flexible amounts of shrinkage

Penalized maximum likelihood estimation has been advocated for its capability to yield substantially improved estimates of covariance matrices, but so far only cases with equal numbers of records have been considered. We show that a generalization of the inverse Wishart distribution can be utilised to derive penalties which allow for differential penalization for different blocks of the matrice...

متن کامل

Ridge Stochastic Restricted Estimators in Semiparametric Linear Measurement Error Models

In this article we consider the stochastic restricted ridge estimation in semipara-metric linear models when the covariates are measured with additive errors. The development of penalized corrected likelihood method in such model is the basis for derivation of ridge estimates. The asymptotic normality of the resulting estimates are established. Also, necessary and sufficient condition...

متن کامل

Regularized multivariate regression models with skew-t error distributions

We consider regularization of the parameters in multivariate linear regression models with the errors having a multivariate skew-t distribution. An iterative penalized likelihood procedure is proposed for constructing sparse estimators of both the regression coefficient and inverse scale matrices simultaneously. The sparsity is introduced through penalizing the negative log-likelihood by adding...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2008